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eiPack: R × C Ecological Inference and
Higher-Dimension Data Management
by Olivia Lau, Ryan T. Moore, and Michael Kellermann

Introduction

Ecological inference (EI) models allow researchers
to infer individual-level behavior from aggregate
data when individual-level data is unavailable. Ta-
ble 1 shows a typical unit of ecological analysis: a
contingency table with observed row and column
marginals and unobserved interior cells.

col1 col2 . . . colC

row1 N11i N12i . . . N1Ci N1·i
row2 N21i N22i . . . N2Ci N2·i
. . . . . . . . . . . . . . .
rowR NR1i NR2i . . . NRCi NR·i

N·1i N·2i . . . N·Ci Ni

Table 1: A typical R × C unit in ecological inference;
red quantities are typically unobserved.

In ecological inference, challenges arise because
information is lost when aggregating across indi-
viduals, a problem that cannot be solved by col-
lecting more aggregate-level data. Thus, EI mod-
els are unusually sensitive to modeling assumptions.
Testing these assumptions is difficult without access
to individual-level data, and recent years have wit-
nessed a lively discussion of the relative merits of
various models (Wakefield, 2004).

Nevertheless, there are many applied problems in
which ecological inferences are necessary, either be-
cause individual-level data is unavailable or because
the aggregate-level data is considered more authori-
tative. The latter is true in the voting rights context
in the United States, where federal courts often base
decisions on evidence derived from one or more EI

models (Cho and Yoon, 2001). While packages such
as MCMCpack (Martin and Quinn, 2006) and eco
(Imai and Lu, 2005), provide tools for 2× 2 inference,
this is insufficient in many applications. In eiPack,
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we implement three existing methods for the general
case in which the ecological units are R × C tables.

Methods and Data in eiPack

The methods currently implemented in eiPack are
the method of bounds (Duncan and Davis, 1953),
ecological regression (Goodman, 1953), and the
Multinomial-Dirichlet model (Rosen et al., 2001).

The functions that implement these models share
several attributes. The ecological tables are defined
using a common formula of the form cbind(col1,
..., colC) ∼ cbind(row1, ...,rowR). The row
and column marginals can be expressed as either
proportions or counts. Auxiliary functions renormal-
ize the results for some subset of columns taken from
the original ecological table, and appropriate print,
summary, and plot functions conveniently summa-
rize the model output.

In the following section, we demonstrate the fea-
tures of eiPack using the (included) senc dataset,
which contains individual-level party affiliation data
for Black, White, and Native American voters in
8 counties in southeastern North Carolina. These
counties include 212 precincts, which form the eco-
logical units in this dataset. Because the data are ob-
served at the individual level, the interior cell counts
are known, allowing us to benchmark the estimates
generated by each method.

Method of Bounds

The method of bounds (Duncan and Davis, 1953)
uses the observed row and column marginals to cal-
culate upper and lower bounds for functions of the
interior cells of each ecological unit. The method of
bounds is not a statistical procedure in the traditional
sense; the bounds implied by the row and column
marginals are deterministic and there is no proba-
bilistic model for the data-generating process.

As implemented in eiPack, the method of bounds
allows the user to calculate for a specified column
k′ ∈ k = {1, . . . , C} the deterministic bounds on the
proportion of individuals in each row who belong in
that column. For each unit being considered, let j be
the row of interest, k index columns, k′ be the column
of interest, k′′ be the set of other columns considered,
and k̃ be the set of columns excluded. For example,
if we want the bounds on the proportion of Native
American two-party registrants who are Democrats,
j is Native American, k′ is Democrat, k′′ is Repub-
lican, and k̃ is No Party. The unit-level quantity of
interest is

Njk′i

Njk′i + ∑k∈k′′ Njki

The lower and upper bounds on this quantity given
by the observed marginals are, respectively,

max(0, Nji − ∑k ̸=k′ Nki)

max(0, Nji − ∑k ̸=k′ Nki) + min(Nji , ∑k∈k′′ Nki)

and

min(Nji , Nk′i)

min(Nji , Nk′i) + max(0, Nji − Nk′i − ∑k∈k̃ Nki)

The intervals generated by the method of bounds
can be analyzed in a variety of ways. Grofman (2000)
suggests calculating the intersection of the unit-level
bounds. If this intersection (calculated by eiPack) is
non-empty, it represents the range of values that are
consistent with the observed marginals in each of the
ecological units.

Researchers and practitioners may also choose to
restrict their attention to units in which one group
dominates, since the bounds will typically be more
informative in those units. eiPack allows users to set
row thresholds to conduct this extreme case analy-
sis (known as homogeneous precinct analysis in the
voting context). For example, suppose the user is in-
terested in the proportion of two-party White regis-
trants registered as Democrats in precincts that are
at least 90% White. eiPack calculates the desired
bounds:

> out <- bounds(cbind(dem, rep, non) ~ cbind(black,
+ white, natam), data = senc, rows = "white",
+ column = "dem", excluded = "non",
+ threshold = 0.9, total = NULL)

These calculated bounds can then be represented
graphically. Segments cover the range of possible
values (the true value for each precinct is the red dot,
not included in the standard bounds plot). In this ex-
ample, the intersection of the precinct-level bounds
is empty.

> plot(out, row = "white", column = "dem")
# add true values to plot
> idx <- as.numeric(rownames(out$bounds$white.dem))
> truth <- senc$whdem[idx]/(senc$white[idx]
+ - senc$non[idx])
> plot((1:length(idx)) / (length(idx) + 1), truth)
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Figure 1: A plot of deterministic bounds.

Ecological Regression

In ecological regression (Goodman, 1953), observed
row and column marginals are expressed as propor-
tions and each column is regressed separately on the
row proportions, thus performing C regressions. Re-
gression coefficients then estimate the population in-
ternal cell proportions. For a given unit i, define

• Xri, the proportion of individuals in row r,

• Tci, the proportion of individuals in column c,
and

• βrci, the proportion of row r individuals in col-
umn c

The following identities hold:

Tci =
R

∑
r=1

βrciXri and
C

∑
c=1

βrci = 1

Defining the population cell fractions βrc such that

∑C
c=1 βrc = 1 for every r, ecological regression as-

sumes that βrc = βrci for all i, and estimates the
regression equations Tci = βrcXri + ϵci. Under
the standard linear regression assumptions, includ-
ing E[ϵci] = 0 and Var[ϵci] = σ2

c for all i, these
regressions recover the population parameters βrc.
eiPack implements frequentist and Bayesian regres-
sion models (via ei.reg and ei.reg.bayes, respec-
tively).

In the Bayesian implementation, we offer two op-
tions for the prior on βrc. As a default, truncate
= FALSE uses an uninformative flat prior that pro-
vides point estimates approaching the frequentist es-
timates (even when those estimates are outside the

feasible range) as the number of draws m → ∞. In
cases where the cell estimates are near the bound-
aries, choosing truncate = TRUE imposes a uniform
prior over the unit hypercube such that all cell frac-
tions are restricted to the range [0, 1].

Output from ecological regression can be summa-
rized numerically just as in lm, or graphically using
density plots. We also include functions to calculate
estimates and standard errors of shares of a subset
of columns in order to address questions such as,
"What is the Democratic share of 2-party registration
for each group?" For the Bayesian model, densities
represent functions of the posterior draws of the βrc;
for the frequentist model, densities reflect functions
of regression point estimates and standard errors cal-
culated using the δ-method.

> out.reg <- ei.reg(cbind(dem, rep, non)
+ ~ cbind(black, white, natam), data = senc)
> lreg <- lambda.reg(out.reg,

columns = c("dem", "rep"))
> density.plot(lreg)
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Figure 2: Density plots of ecological regression out-
put.

Multinomial-Dirichlet (MD) model

In the Multinomial-Dirichlet model proposed by
Rosen et al. (2001), the data is expressed as counts
and a hierarchical Bayesian model is fit using a
Metropolis-within-Gibbs algorithm implemented in
C. Level 1 models the observed column marginals
as multinomial (and independent across units); the
choice of the multinomial corresponds to sampling
with replacement from the population. Level 2 mod-
els the unobserved row cell fractions as Dirichlet
(and independent across rows and units); Level 3
models the Dirichlet parameters as i.i.d. Gamma.
More formally, without a covariate, the model is
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(N·1i , . . . , N·Ci)
⊥⊥
∼ Multinomial(Ni ,

R

∑
r=1

βr1iXri ,

. . . ,
R

∑
r=1

βrCiXri)

(βr1i , . . . , βrCi)
⊥⊥
∼ Dirichlet(αr1, . . . ,αrC)

αrc
i.i.d.
∼ Gamma(λ1, λ2)

With a unit-level covariate Zi in the second level,
the model becomes

(N·1i , . . . , N·Ci)
⊥⊥
∼ Multinomial(Ni ,

R

∑
r=1

βr1iXri ,

. . . ,
R

∑
r=1

βrCiXri)

(βr1i , . . . , βrCi)
⊥⊥
∼ Dirichlet(dre(γrc+δrcZi), . . . ,

dre(γr(C−1)+δr(C−1)Zi), dr)

dr
i.i.d.
∼ Gamma(λ1, λ2)

In the model with a covariate, users have two op-
tions for the priors on γrc and δrc . They may as-
sume an improper uniform prior, as was suggested
by Rosen et al. (2001), or they may specify normal
priors for each γrc and δrc as follows:

γrc ∼ N(µγrc ,σ2
γrc

)

δrc ∼ N(µδrc ,σ2
δrc

)

As Wakefield (2004) notes, the weak identification
that characterizes hierarchical models in the EI con-
text is likely to make the results sensitive to the
choice of prior. Users should experiment with differ-
ent assumptions about the prior distribution of the
upper-level parameters in order to gauge the robust-
ness of their inferences.

The parameterization of the prior on each
(βr1i , . . . , βrCi) implies that the following log-odds
ratio of expected fractions is linear with respect to
the covariate Zi:

log

(

E(βrci)
E(βrCi)

)

= γrc + δrcZi

Conducting an analysis using the MD model re-
quires two steps. First, tuneMD calibrates the tuning
parameters used for Metropolis-Hastings sampling:

> tune.nocov <- tuneMD(cbind(dem, rep, non)
+ ~ cbind(black, white, natam), data = senc,
+ ntunes = 10, totaldraws = 100000)

Second, ei.MD.bayes fits the model by calling C code
to generate MCMC draws:

> out.nocov <- ei.MD.bayes(cbind(dem, rep, non)
+ ~ cbind(black, white, natam),
+ covariate = NULL, data = senc,
+ tune.list = tune.nocov)

The output of this function can be returned as mcmc
objects or arrays; in the former case, the standard
diagnostic tools in coda (Plummer et al., 2006) can
be applied directly. The MD implementation in-
cludes lambda and density.plot functions, usage
for which is analogous to ecological regression:

> lmd <- lambda.MD(out.nocov,
+ columns = c("dem", "rep"))
> density.plot(lmd)

If the precinct-level parameters are returned or
saved, cover.plot plots the central credible inter-
vals for each precinct. The segments represent the
95% central credible intervals and their medians for
each unit (the true value for each precinct is the red
dot, not included in the standard cover.plot).

> cover.plot(out.nocov, row = "white",
+ column = "dem")
# add true values to plot
> points(senc$white/senc$total,
+ senc$whdem/senc$white)
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Figure 3: Coverage plot for MD model output.

Data Management

In the MD model, reasonable-sized problems produce
unreasonable amounts of data. For example, a model
for voting in Ohio includes 11000 precincts, 3 racial
groups, and 4 parties. Implementing 1000 iterations
yields about 130 million parameter draws. These
draws occupy about 1GB of RAM, and this is almost
certainly not enough iterations. We provide a few
options to users in order to make this model tractable
for large EI problems.

The unit-level parameters present the most sig-
nificant data management problem. Rather than
storing unit-level parameters in the workspace,
users can save each chain as a .tar.gz file on
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disk using the option ei.MD.bayes(..., ret.beta
= "s"), or discard the unit-level draws entirely us-
ing ei.MD.bayes(..., ret.beta = "d"). To recon-
struct the chains, users can select the row marginals,
column marginals, and units of interest, without re-
constructing the entire matrix of unit-level draws:

> read.betas(rows = c("black", "white"),
+ columns = "dem", units = 1:150,
+ dir = getwd())

If users are interested in some function of the unit-
level parameters, the implementation of the MD

model allows them to define a function in R that
will be called from within the C sampling algorithm,
in which case the unit-level parameters need not be
saved for post-processing.
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The ade4 Package — II: Two-table and
K-table Methods
by Stéphane Dray, Anne B. Dufour and Daniel Chessel

Introduction

The ade4 package proposes a great variety of ex-
planatory methods to analyse multivariate datasets.
As suggested by the acronym ade4 (Data Analysis
functions to analyse Ecological and Environmental
data in the framework of Euclidean Exploratory
methods), the package is devoted to ecologists but
it could be useful in many other fields (e.g., Goecke,
2005). Methods available in the package are partic-
ular cases of the duality diagram (Escoufier, 1987;

Holmes, 2006; Dray and Dufour, 2007) and the im-
plementation of the functions follows the description
of this unifying mathematical tool (class dudi). The
main functions of the package for one-table analysis
methods have been presented in Chessel et al. (2004).
This new paper presents a short summary of two-
table and K-table methods available in the package.

Ecological illustration

In order to illustrate the methods, we used the
dataset jv73 (Verneaux, 1973) which is available in
the package. This dataset concerns 12 rivers. For
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