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Blocking Political Science Experiments:
Why, How, and Then What?

Ryan Moore, Assistant Professor of Political Science,

Washington University at St. Louis

As experimentalists, we enjoy that moment right before

we push the “randomize” button. We have carefully defined

our sample, treatments, implementation protocol, and

eventual analysis plans. We’re about to overcome all the

maladies of non-random treatment assignment that led us to

the hard work of setting up an experiment in the first place.

But wait – what will you do if all the poor

neighborhoods end up in the treatment condition? What if

all the male subjects are assigned to control? What if you

have not just one binary measure, but a half-dozen

continuous covariates that you want balanced in your finite

sample? Bigger samples and good luck will help, but we can

do better. Blocking the sample prior to randomization can

incorporate rich covariate information to ensure comparable

groups, increase the efficiency of treatment estimates, and

provide guidance should things go wrong.

Blocking is the pre-randomization sorting of units into

homogeneous groups with the plan to randomize within

those groups. In the examples above, you could sort

neighborhoods by income, or subjects by sex, and then

randomize treatment assignment within these blocks.

Creating blocks helps ensure that covariates are

balanced across the treatment conditions. Consider a small

GOTV experiment with six voters who have voted 2, 2, 3, 3,

4, and 4 times in the last four elections. If we randomly

allocate half the voters to treatment and half to control, then

in 60% of possible randomizations, our two groups will

differ in mean previous votes by
2
3 or

4
3 . However, if we

block exactly on the number of previous votes X, we will

always have perfect balance across the treatment conditions.

This balance reduces the bias in causal estimates that comes

from comparing a treatment group of 2, 2, 3 with a control

group of 3, 4, 4, for example.

Blocking also increases the efficiency of causal estimates;

this means fewer observations are needed to detect a given

treatment effect, saving time and money. Suppose that the

outcome is whether a voter votes in this election, voters’

baseline probability of turning out is 0.2X ± .05, and the

GOTV prompt increases the probability of turnout by 0.1.

Then, the standard deviation (SD) of the difference in

treatment and control means from all the unblocked

randomizations is about 0.15. Blocking this experiment on

X yields an SD of mean differences of about 0.04 – a design

that is about 73% more efficient!

Through blocking, design can anticipate and overcome a

frequent field experiment reality: some units may be

compromised during an experiment, and they and their
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blockmates can be excluded from analysis without

endangering the entire randomization.

To implement blocking in an actual experiment, the first

decision is to choose the variables to block on. You can block

on a large set of covariates, including discrete and

continuous measures. Blocking should focus on variables

likely to affect the outcome of interest. Similarly, for any

important subgroup analyses you have planned, block on the

variables that define the subgroups to ensure that enough

units from each subgroup are assigned to the various

treatment conditions.

Next decide how to weight the blocking variables.

Typically, you’ll first note firm restrictions you want to place

on blockmates. For example, you may randomize polling

places within metropolitan areas or undergraduate subjects

within universities. Further, you might want to restrict

blockmates to be within a range of one another on a more

continuous measure, such as no more than 100 points

different in SAT scores. Using the sample data x100

provided in the R library blockTools (Moore 2010), you

can, e.g., use the block command to block on two

continuous variables b1 and b2 within groups defined by

variable g, and restrict blockmates to be no more than 100

points different on b2:

> out <- block(x100, groups="g",

id.vars="id", block.vars=c("b1", "b2"),

valid.var="b2", valid.range=c(0,100))

By default, the blocking variables are weighted by the

inverse of their covariance matrix using the Mahalanobis

distance. If there are outlying observations in X that you

still want to include in the experiment, you can use

estimates of the covariance matrix that are robust to these

observations.
1

Alternatively, you can exploit substantive

knowledge to weight important quantities more highly in the

distance calculation.

Finally, you will select an algorithm for creating the

blocks. While a naive greedy algorithm will create the best

block using the first unit in the dataset, then the second, etc.,

this blocked design may not be the best design possible. An

optimal algorithm considers all possible blockings and

selects the one that gives the best balance, but can be

computationally intensive even in “medium-sized” samples.

A middle approach, an “optimal-greedy” algorithm,

considers all the multivariate distances between units at

once, and selects the best available block. The

optimal-greedy approach outperforms the naive greedy

algorithm in balancing covariates, and the Figure below

shows evidence of this outperformance from the actual field

experimental design described in King et al. (2007). The red

dots show the decrease in covariate imbalance when

compared to the blue dots in several cases.
2
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You now have a table of blocks, ready for random

assignment. Using the output object from above:

> assg <- assignment(out)

Another feature enables you to diagnose potential

interference between units by checking whether treatment

and control are “too close” to one another. Here we check for

units of opposite treatment condition within five points

different from one another on b1:

> diagnose(assg, x100, id.vars = "id",

suspect.var = "b1", suspect.range = c(0,5))

After you have implemented your experimental protocol

and collected your outcome and follow-up data, you’re ready

to analyze the blocked experiment to calculate treatment

1
This and all other options mentioned here are available in blockTools. For a more full tutorial, including how to install the package, see

http://rtm.wustl.edu/software.blockTools.htm

2
The eight comparisons represent two types of units (urban/rural), two subsets of units (all/best half), and two global meaures of optimality

(mean/median distance).
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effects. Typical difference-of-means estimators still apply

(see Imai et al. (2009) for related work on cluster

randomizations), and parametric regression estimators

should include indicators for blocks.

Blocking can help you satisfy scientific colleagues (with

less biased estimates), funders (with more efficient design),

and policy implementers alike (with plans for compromised

units). Never again will you need to worry that your digital

coin might misbehave!
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Procedural Transparency, Experiments
and the Credibility of Political Science
Arthur Lupia, Hal R. Varian Collegiate Professor of Political

Science, University of Michigan

Political science has a problem. Your actions as an

experimental political scientist can be part of the solution.

The problem pertains to our credibility. Many political

scientists publish empirical research claims that others

cannot replicate. This outcome occurs even in cases where

the scholar who attempts the replication possesses the same

dataset as the scholar who made the original claim.

Consider, as an example, a situation in which both scholars

have equal access to a public data source, such as the

American National Election Studies, but one cannot

reproduce the other’s published claims.

Across North America and Western Europe

graduate-level classes in Political Science try to reproduce

empirical claims made in our discipline’s leading journals. I

have spoken to scholars who teach these classes. The typical

reported success rate is abysmal. This is embarrassing for the

discipline.

When one scholar cannot reproduce another’s empirical

claims, particularly when they share access to a common

dataset, the failures call into question the credibility of the

initial claims. Credibility is called into question because it is

often difficult to separate the meaning of an empirical claim

from the processes that produced it. In other words, the

meaning of the claim ”If X, then Y,” often depends on how X

and Y are measured and on how the relationship is

examined.

When scholars cannot recall, or find a record of, the

steps they took in producing an empirical claim, then they

are handicapped in their ability to render a credible

explanation of what their result means. For example, when a

scholar manipulates ANES variables in ways that he or she

fails to record and/or cannot remember which specific

regression model produced the results in his or her paper,

readers are justified in questioning the initial claim’s

meaning. While experimental scholars are likely familiar

with such problems in quantitative Political Science, they are

also manifest in qualitative scholarship (see, e.g., Moravscik

2010).

Current and future leaders of experimental political

science have a unique opportunity to make a difference in

the domain of procedural transparency. In the opening years

of our organized section, we have an opportunity to

establish best practices for documenting and sharing

information about our procedures. In this essay, I will offer

suggestions about the practices we should pursue and argue

that if experimental political scientists commit to high and

consistent levels of procedural transparency, the cumulative

effect of such commitments will be to improve Political

Science’s credibility.

How Procedural Transparency Increases Credibility

The goal of this essay is to encourage experimental

political scientists to augment their individual, and the field’s

collective, credibility by committing to high levels of
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