
26 The Political Methodologist, vol. 22, no.1

In Sum

On many campuses political (and other social) scientists do-
ing field research are faced with educating IRB members and
administrative sta↵ about the ways in which their methods
di↵er from the experimental studies performed in hospitals
and laboratories. Understanding the federal regulations can
put researchers on more solid footing in pointing to per-
mitted research practices that their local Boards may not
recognize. And knowing IRB-speak can enable clearer com-
munications between researchers and Board members and
sta↵. Though challenging, educating sta↵ as well as Board
members potentially benefits all field researchers, gradu-
ate students in particular, some of whom have given up on
field research due to IRB delays, often greater for research
that does not fit the experimental model (van den Hoonard
2011).

IRB review is no guarantee that the ethical issues rele-
vant to a particular research project will be raised. Indeed,
one of our concerns is the extent to which IRB adminis-
trative processes are replacing research ethics conversations
that might otherwise (and, in our view, should) be part of
departmental curricula, research colloquia, and discussions
with supervisors and colleagues. Moreover, significant ethi-
cal matters of particular concern to political science research
are simply beyond the bounds of US IRB policy, includ-
ing recognition of the ways in which current policy makes
“studying up” (i.e., studying societal elites and other power
holders) more di�cult.

Change may still be possible. In July 2011, OHRP is-
sued an Advanced Notice of Proposed Rulemaking, calling
for comments on its proposed regulatory revisions. As of
this writing, the O�ce has not yet announced an actual
policy change (which would require its own comment pe-
riod). OHRP has proposed revising several of the require-
ments discussed in this essay, including allowing researchers

themselves to determine whether their research is “excused”
(their suggested replacement for “exempt”). Because of IRB
policies’ impact, we call on political scientists to monitor
this matter. Although much attention has, rightly, been fo-
cused on Congressional e↵orts to curtail National Science
Foundation funding, as IRB policy a↵ects all research en-
gaging human participants, it deserves as much disciplinary
attention.

References

Schrag, Zachary M. 2010. Ethical Imperialism: Institutional
Review Boards and the Social Sciences, 1965-2009. Bal-
timore, MD: Johns Hopkins University Press.

Schwartz-Shea, Peregrine and Yanow, Dvora. 2014. Field
Research and US Institutional Review Board Policy.
Betty Glad Memorial Symposium, University of Utah
(March 20-21). http://poli-sci.utah.edu/2014-

research-symposium.php.

Stark, Laura. 2012. Behind Closed Doors: IRBs and the
Making of Ethical Research. Chicago: University of
Chicago Press.

US Code of Federal Regulations. 2009. Title 45, Public Wel-
fare, Department of Health and Human Services, Part
46, Protection of human subjects. http://www.hhs.

gov/ohrp/humansubjects/guidance/45cfr46.html.

van den Hoonaard, Will. C. 2011. The Seduction of Ethics.
Toronto: University of Toronto Press.

Yanow, Dvora and Schwartz-Shea, Peregrine. 2008. “Re-
forming institutional review board policy.” PS: Political
Science & Politics 41(3): 484-94.

Andreoni, James. 1989. “Giving with Impure Altruism:
Applications to Charity and Ricardian Equivalence.”
The Journal of Political Economy 97(6): 1447-58.

Building and Maintaining R Packages
with devtools and roxygen2

Jacob Montgomery
Washington University in St. Louis
jacob.montgomery@wustl.edu

Ryan T. Moore
American University
rtm@american.edu

Political methodologists increasingly develop complex
computer code for data processing, statistical analysis, and

data visualization – code that is intended for eventual dis-
tribution to collaborators and readers, and for storage in
replication archives.1 This code can involve multiple func-
tions stored in many files, which can be di�cult for others
to read, use, or modify. In many cases, even loading the
various files containing the needed functions and datasets
can be a time-consuming chore.

For researchers working in R (R Core Team 2014), cre-
ating a package is an attractive option for organizing and
distributing complex code. A basic R package consists of a
set of functions, documentation, and some metadata. Other
components, such as datasets, demo, or compiled code may

1Supplementary materials, including the code needed to build our example R package, are available at https://github.com/jmontgomery/

squaresPack.

The Political Methodologist, vol. 22, no.1 27

also be included. Turning all of this into a formal R package
makes it very easy to distribute it to other scholars either via
the Comprehensive R Archiving Network (CRAN) or simply
as a compressed folder. Package creation imposes standards
that encourage both the proper organization and coherent
documentation of functions and datasets. Packages also al-
low users to quickly load and use all the relevant files on
their systems. Once installed, a package’s functions, doc-
umentation, datasets, and demonstrations can be accessed
using R commands such as library(), help(), data(), and
demo().

However, transforming R code into a package can be a
di�cult and tedious process requiring the generation and
organization of files, metadata, and other information in a
manner that conforms to R package standards. It can be
particularly di�cult for users less experienced with R’s tech-
nical underpinnings. In this article, we demonstrate how
to develop a simple R package involving only R code, its
documentation, and the necessary metadata. In particular,
we discuss two packages designed to streamline the pack-
age development process – devtools and roxygen2 (Wick-
ham 2013; Wickham, Danenberg, and Eugster 2011). We
begin by describing the basic structure of an R package
and alternative approaches to package development, main-
tenance, and distribution. We compare the steps required
to manually manage files, directories, and metadata to a
more streamlined process employing the devtools package.
We conclude with a discussion of more advanced issues such
as the inclusion of datasets and demo files.2

1. R Package Basics

R package development requires building a directory of
files that include the R code, documentation, and two spe-
cific files containing required metadata.3 In this section,
we walk through the basic components of an R package.
As a running example, we create an R package contain-
ing two functions, which are stored in separate files named
addSquares.R and subtractSquares.R.
Function 1: Sum of squares
addSquares <- function(x, y){
return(list(square=(x^2 + y^2), x = x, y = y))
}

Function 2: Difference of squares
subtractSquares <- function(x, y){
return(list(square=(x^2 - y^2), x = x, y = y))
}

We build the package in the directory
~/Desktop/MyPackage/, where a *.R file containing each
function is stored. The R package resides in a single direc-
tory whose title matches the package name. The directory
must contain two metadata files, called DESCRIPTION and

NAMESPACE, and two subdirectories containing the relevant
R code and documentation. Thus, our squaresPack pack-
age will be structured as follows.

squaresPack

DESCRIPTION

NAMESPACE

R

addSquares.R

subtractSquares.R

man

addSquares.Rd

subtractSquares.Rd

Populating the package directory consists of four basic
steps. First, we store all R source code in the subdirectory R.
A good standard is to include each R function as a separate
file. Second, corresponding documentation should accom-
pany all functions that users can call. This documentation,
which explains the purpose of the function, its inputs, and
the values of any output, is stored in the subdirectory man.
For example, the file addSquares.Rd would appear as fol-
lows.
\name{addSquares}
\alias{addSquares}
\title{Adding squared values}
\usage{
addSquares(x, y)
}
\arguments{
\item{x}{A numeric object.}
\item{y}{A numeric object with the same dimensionality as \code{x}.}
}
\value{
A list with the elements
\item{squares}{The sum of the squared values.}
\item{x}{The first object input.}
\item{y}{The second object input.}
}
\description{
Finds the squared sum of numbers.
}
\note{
This is a very simple function.
}
\examples{
myX <- c(20, 3); myY <- c(-2, 4.1)
addSquares(myX, myY)
}
\author{
Jacob M. Montgomery

}

Third, the directory must contain a file named
DESCRIPTION that documents the directory in a specific way.
The DESCRIPTION file contains basic information including
the package name, the formal title, the current version num-
ber, the date for the version release, and the name of the au-
thor and maintainer. Here we also specify any dependencies
on other R packages and list the files in the R subdirectory.
Package: squaresPack
Title: Adding and subtracting squared values
Version: 0.1

2The code and examples below were written for Mac OS X (10.7 and 10.8) running R version 3.1.0 with devtools version 1.5. Some adjustment
may be necessary for authors using Linux. R package creation using Windows machines is not recommended. A useful online tutorial for creating
an R package in RStudio using devtools and roxygen2 is currently available at: https://www.youtube.com/watch?v=9PyQlbAEujY

3The canonical source on package development for R is “Writing R Extensions” (R Core Team 2013).

28 The Political Methodologist, vol. 22, no.1

Author: Jacob M. Montgomery and Ryan T. Moore
Maintainer: Ryan T. Moore <rtm@american.edu>
Description: Find sum and difference of squared values
Depends: R (>= 3.0.0)
License: GPL (> = 2)
Collate:
‘addSquares.R’
‘subtractSquares.R’

Finally, the NAMESPACE file is a list of commands that
are run by R when the package is loaded to make the R
functions, classes, and methods defined in the package “vis-
ible” to R and the user. As we discuss briefly below, details
on class structures and methods can be declared here. For
squaresPack, the NAMESPACE file tells R to allow the user to
call our two functions.

export(addSquares)
export(subtractSquares)

2. Approaches to Package Development and
Maintenance

Authors can create and update packages in several ways,
arrayed on a continuum from “very manual” to “nearly au-
tomated.” At the “very manual” end, the author starts by
creating the directory structure, each of the required meta-
data files, and a documentation file for each function. A
“semi-manual” approach initializes the package automati-
cally, but then requires that maintainers update the meta-
data and create documentation files for new functions as
they are added. We describe this latter approach to build
readers’ intuition for what happens behind the scenes in the
“nearly automated” approach we detail in Section 2.2, and
because this approach requires nothing beyond base R.

2.1. Semi-manual Package Maintenance

A “semi-manual” procedure automatically initializes the
package, but may require substantial bookkeeping as de-
velopment proceeds.
Package creation: After the author loads the required func-
tions into her workspace, she provides package.skeleton()
with the package name and a list of the functions to be in-
cluded.

setwd("~/Desktop/MyPackage/") ## Set the working directory
source("addSquares.R") ## Load functions into workspace
source("subtractSquares.R")
package.skeleton(name = "squaresPack",

list = c("addSquares", "subtractSquares"))

This creates the package directory using the proper struc-
ture, generates blank documentation files with the appropri-
ate file names, and includes a helpful ‘Read-and-delete-me’
file that describes a few of the next steps. After the package
is created, the author edits the DESCRIPTION, NAMESPACE,
and help files, and the package is ready to compile and sub-
mit to CRAN. To compile the package, check it for errors,

and install it on the author’s instance requires three steps
(shown below for the Terminal prompt in the Mac OS),

R CMD build --resave-data=no squaresPack
R CMD check squaresPack
R CMD INSTALL squaresPack

Package maintenance and submission: Superficially, the
process described above may not seem cumbersome. How-
ever, calling package.skeleton() again (after deciding
to add a new function, for example) will overwrite the
previously-created directory, so any changes to documen-
tation or metadata will be lost. Thus, after the original
call to package.skeleton(), the author should manually
add new data, functions, methods, and metadata into the
initial skeleton. Adding new arguments to an existing func-
tion requires editing associated help files separately. Thus,
a minimal list of required steps for updating and distribut-
ing an R package via this method includes the steps shown
below.4

1. Edit DESCRIPTION file

2. Change R code and/or data files.

3. Edit NAMESPACE file

4. Update man files

5. R CMD build --resave-data=no pkg

6. R CMD check pkg

7. R CMD INSTALL pkg

8. Build Windows version to ensure compliance by sub-
mitting to: http://win-builder.r-project.org/

9. Upload (via Terminal below, or use other FTP client):

> ftp cran.r-project.org

> cd incoming

> put pkg 0.1-1.tar.gz

10. Email R-core team: cran@r-project.org

This approach comes with significant drawbacks. Most im-
portantly, editing the package requires altering multiple files
stored across subdirectories. If a new function is added,
for instance, this requires updating the R subdirectory, the
DESCRIPTION file and usually the NAMESPACE file. In more
complicated programming tasks that involve class structures
and the like, such bookkeeping tasks can become a signif-
icant burden. Moreover, the process of actually building,
checking, and submitting a package can involve moving be-
tween multiple user directories, user interfaces, and soft-
ware.

We have authored four R packages over the course of
the last six years. To organize the manual updating steps,
one of us created an 17-point checklist outlining the actions

4We omit some maintenance details such as updating the LICENSE file, the Changelog, and unit testing.

The Political Methodologist, vol. 22, no.1 29

required each time a package is edited. We expect that
most authors will welcome some automation. The packages
devtools and roxygen2 can simplify package maintenance
and allow authors to focus more on improving the function-
ality and documentation of their package.

2.2. devtools and roxygen2

devtools streamlines several steps: it creates and updates
appropriate documentation files, it eliminates the need to
leave R to build and check the package from the terminal
prompt, and it submits the package to win-builder and
CRAN and emails the R-core team from within R itself.
After the initial directory structure is created, the only files
that are edited directly by the author are contained in the R
directory (with one exception – the DESCRIPTION file should
be reviewed before the package is released). This is possible
because devtools automates the writing of the help files,
the NAMESPACE file, and updating of the DESCRIPTION file
relying on information placed directly in *.R files.

There are several advantages to developing code with
devtools, but the main benefit is improved workflow. For
instance, adding a new function using more manual methods
requires creating the code in a *.R file stored in the R subdi-
rectory, specifying the attendant documentation as a *.Rd

file in the man subdirectory, and updating the DESCRIPTION
and NAMESPACE files. In contrast, developing new func-
tions with devtools requires only editing a single *.R file,
wherein the function and its documentation are written si-
multaneously. devtools then updates the documentation
(using the roxygen2 package), and package metadata with
no further attention.
Writing *.R files: Thus, one key advantage of using
devtools is that the *.R files will themselves contain the
information for generating help files and updating metadata
files. Each function is accompanied by detailed comments
that are parsed and used to update the other files. Below
we show how to format the addSquares.R file to create the
same help files and NAMESPACE file shown above.

#’ Adding squared values
#’
#’ Finds the sum of squared numbers.
#’
#’ @param x A numeric object.
#’ @param y A numeric object with the same dimensionality as \code{x

}.
#’
#’ @return A list with the elements
#’ \item{squares}{The sum of the squared values.}
#’ \item{x}{The first object input.}
#’ \item{y}{The second object input.}
#’ @author Jacob M. Montgomery
#’ @note This is a very simple function.
#’ @examples
#’
#’ myX <- c(20, 3)
#’ myY <- c(-2, 4.1)

#’ addSquares(myX, myY)
#’ @rdname addSquares
#’ @export
addSquares<- function(x, y){
return(list(square=(x^2 + y^2), x = x, y = y))

}

The text following the #’ symbols is processed by R
during package creation to make the *.Rd and NAMESPACE

files. The @param, @return, @author, @note, @examples,
and @seealso commands specify the corresponding blocks
in the help file. The @rdname block overrides the default
setting to specify the name of the associated help file, and
@export instructs R to add the necessary commands to the
NAMESPACE file. We now walk through the steps required to
initialize and maintain a package with devtools.
Setting up the package: Creating an R package from these
augmented *.R files is straightforward. First, we must cre-
ate the basic directory structure using

setwd("~/Desktop/MyPackage/") ## Set the working directory
create("squaresPack")

Second, we edit the DESCRIPTION file to make sure it con-
tains the correct version, package name, etc. The create()
call produces a template file. The author will need to add
some information to this template DESCRIPTION file,5such
as

Author: Me
Maintainer: Me <me@myemail.edu>

devtools will automatically collate all R files contained
in the various subdirectories. Third, place the relevant R
scripts in the R directory. Finally, making sure that the
working directory is correctly set, we can create and docu-
ment the package using three commands:

current.code <- as.package("squaresPack")
load_all(current.code)
document(current.code)

The as.package() call loads the package and creates
an object representation of the entire package in the user’s
workspace. The load all() call loads all of the R files from
the package into the user’s workspace as if the package was
already installed.6 The document() command creates the
required documentation files for each function and the pack-
age, as well as updates the NAMESPACE and DESCRIPTION

files.
Sharing the package: Next, the author prepares the package
for wider release from within R. To build the package, the
author runs build(current.code, path=getwd()). The
analogous build win() command will upload the pack-
age to the http://win-builder.r-project.org/ website.
This builds the package in a Windows environment and
emails the address of the maintainer in the DESCRIPTION

file with results in about thirty minutes. Both of these com-
pressed files can be uploaded onto websites, sent by email,

5The DESCRIPTION file should not contain any blank lines. If the template file contains any, these will either need to be deleted or filled in.
6The help files and demo files will only be available using after running install(current.code), which is equivalent to R CMD INSTALL in the

Terminal.

30 The Political Methodologist, vol. 22, no.1

or stored in replication archives. Other users can download
the package and install it locally.

The package can be submitted to CRAN without the
need to leave R. We provide a minimal checklist for editing
and submitting an existing R package using devtools:

1. Edit R code and/or data files

2. Run as.package(), load all(), and document()

3. Check the code: check(current.code)

4. Make a Windows build: build win(current.code)

5. Double-check the DESCRIPTION file

6. Submit the package to CRAN: release(current.code,
check=FALSE)

The check() command is analogous to the R CMD check

from the terminal, but it also (re)builds the package. As-
suming that the package passes all of the required checks, it
is ready for submission to CRAN. As a final precaution,
we recommend taking a moment to visually inspect the
DESCRIPTION file to ensure that it contains the correct email
address for the maintainer and the correct release version.
Finally, the release() command will submit the package
via FTP and generate the required email. This email should
come from the same address listed for the package main-
tainer in the DESCRIPTION file.

3. Extensions: Documentation, Data, De-
mos, and S4

Often, R packages include additional documentation,
datasets, and commands that can be executed using the
demo() function. These can illustrate the package’s func-
tionalities, replicate results from a published article, or il-
lustrate a set of results for a collaborator. Some authors
may also work in the S4 framework, which requires more
documentation and some tricks for setting up the package
to pass CRAN checks. A somewhat more developed R pack-
age might consist of a directory structured as follows.

squaresPack

DESCRIPTION

NAMESPACE

R

addSquares.R

subtractSquares.R

exampleDataset.R

squaresPack-package.R

man

squaresPack.Rd

addSquares.Rd

subtractSquares.Rd

exampleDataset.Rd

data

exampleDataset.rda

demo

00Index

addSquares.R

subtractSquares.R

3.1. Package Documentation

One common feature of many packages is some simple doc-
umentation of the package itself. Using devtools, this
requires the author to include a chunk of code in some
file in the R subdirectory. In our example, we include a
file called squaresPack-package.R containing the following
code. (Note the use of the @docType designation and that
no actual R code is associated with this documentation.)

#’ squaresPack
#’
#’ The squaresPack package performs simple arithmetic calculations.
#’ @name squaresPack
#’ @docType package
#’ @author Ryan T. Moore: \email{rtm@@american.edu} and
#’ Jacob M. Montgomery: \email{jacob.montgomery@@wustl.edu}
#’ @examples
#’
#’ \dontrun{
#’ demo(addSquares)
#’ demo(subtractSquares)
#’ }
#’
NULL

3.2. Datasets

Another common feature of many R packages is the inclusion
of datasets. Datasets are typically stored as *.rda objects
and must be located in the data subdirectory. Document-
ing the dataset is similar to documenting the package itself.
In our example, we created a separate exampleDataset.R

file with the following content.

#’ Example Dataset
#’
#’ This line could include a brief description of the data
#’
#’ The variables included in the dataset are:
#’ \itemize{
#’ \item\code{Variable1} A vector of random numbers
#’ \item\code{Variable2} Another vector of random numbers
#’ }
#’
#’ @name exampleDataset
#’ @docType data
NULL

3.3. Demo Files

The demo file provides examples for particular functions
or the package as a whole. Demo files should contain
a single R script that will be run when the user calls
demo(addSquares) or demo(subtractSquares). Since this
command will also be run during the normal R check,
authors may want to omit any extremely slow or time-
consuming command.

The Political Methodologist, vol. 22, no.1 31

As the directory structure above shows, the demo subdi-
rectory must include an index file named 00Index listing the
included demo files, one per line, with a short description:

addSquares Demo file for addSquares
subtractSquares Demo file for subtractSquares

Each demo file is a *.R file that ends with code that is run
when the user types, for example, demo(addSquares):

dx <- 1:2
dy <- 3:4
addSquares(dx, dy)

3.4. S4 Considerations

Finally, some authors may work in an S4 environment,
which requires the specification of both class structures,
generics, and class-specific methods.7 In S4 development,
every class, subclass, and method must have a help file. To
handle this, one can include a list of ’aliases’ in the help
files. That is, one can make one help file for the class defi-
nition also work for some of the more trivial class methods
that may not require their own documentation. To do this,
one includes multiple class-specific methods in the @alias

block. One can point multiple classes and methods to the
same help file using the @rdname command.

4. Conclusion

We illustrate how the devtools package can aid package au-
thors in package maintenance by automating several steps
of the process. The package allows authors to focus on only
editing *.R files since both documentation and metadata
files are updated automatically. The package also automates
several steps such as submission to CRAN via ftp.

While we believe that the devtools approach to cre-
ating and managing R packages o↵ers several advantages,
there are potential drawbacks. We routinely use other of
Hadley Wickham’s excellent packages, such as reshape,
plyr, lubridate, and ggplot2. On one hand, each of them
o↵ers automation that greatly speeds up complex processes

such as attractively displaying high-dimensional data. How-
ever, it can also take time to learn a new syntax for old
tricks. Such frustrations may make package writers hesitant
to give up full control from a more manual maintenance sys-
tem. By making one’s R code conform to the requirements
of the devtools workflow, one may lose some degree of flex-
ibility.

Yet, devtools makes it simpler to execute the required
steps e�ciently. It promises to smoothly integrate pack-
age development and checks, to cut out the need to switch
between R and the command line, and to greatly reduce
the number of files and directories that must be manu-
ally edited. Moreover, the latest release of the package
contains many further refinements, such as building pack-
ages directly from GitHub repositories, creating vignettes,
and creating “clean” environments for code development.
While developing R packages in a manner consistent with
devtools requires re-learning some techniques, we believe
that it comes with significant advantages for speeding up
development and reducing the frustration commonly asso-
ciated with transforming a batch of code into a package.

References

Chambers, John M. Software for Data Analysis: Program-
ming with R. New York, NY: Springer.

R Core Team. 2013. “Writing R Extensions.” http:

//cran.r-project.org/doc/manuals/R-exts.html,
Version 3.0.0.

R Core Team. 2014. R: Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing. ISBN 3-900051-07-0.

Wickham, Hadley. 2013. devtools: Tools to Make Devel-
oping R Code Easier. R package version 1.2. http:

//CRAN.R-project.org/package=devtools.

Wickham, Hadley, Peter Danenberg, and Manuel Eugster.
2011. roxygen2: In-source documentation for R. R
package version 2.2.2. http://CRAN.R-project.org/

package=roxygen2.

7For additional details on S4 programming, see Chambers (2008).

